Rabu, 27 Oktober 2010

Kawasaki Ninja

2010 Kawasaki Ninja 650R First Look 2010 Kawasaki Ninja 650R Block Engine 2010 Kawasaki Ninja 650R Machine View 2010 Kawasaki Ninja 650R Steering 2010 Kawasaki Ninja 650R Wheel2010 Kawasaki Ninja®...
READ MORE


Kawasaki Athlete 125 cc R Modifikasi


For abutting kawasaki amateur is kawasaki athlete 125R or 150 cc, 150R.Like that was accepted by us kawasaki Amateur in armed the apparatus 125cc that could aftermath the ability of 10 adaptable phones...
READ MORE

MODIFIKASI KAWASAKI KSR


KAWASAKI KSR PICTURE AND WALLPAPER MODIFICATION Kawasaki KSR is the most popular in Japan and Thailand mini motard. Its’ weight is 85 kilos only (Ducati Hypermotard, for example, weigh about 180 kilos),...
READ MORE

Kawasaki Ninja 250R Racing Modification


Kawasaki Ninja 250R Racing Modification PictureSpec detail of Kawasaki Ninja 250R Racing Modification:*A-Tech Undecowl*A-Tech Side Mirror*Bridgestone Batlax BT 016 Front 120/70-17*Bridgestone Batlax...
READ MORE

Modifikasi Kawasaki Ninja 250R


The bicycle of Kawasaki Ninja 250R is famous for its splendid combination of power and output of the fuel. Other devices which make this bicycle a popular toy among the cyclists of experiment is certainly...
READ MORE

Kawasaki KLX 150S Reviews and Pictures


Financial crisis does not impede the motorcycle manufacturer Kawasaki Indonesia to launch the newest product that is Kawasaki KLX 150S. Kawasaki KLX 150S-4 is not motorized, single-compound 5 and the...
READ MORE

2008 Kawasaki 250R


2008 Kawasaki 250R green 2008 Kawasaki 250R black The 2008 Kawasaki 250R has been redesigned and it looks good. The 250R makes a great entry level ride and it doesn’t lack for performance either,...
READ MORE

2009 KAWASAKI CONCOURS™ 14 AND CONCOURS™ 14 ABS Features and Spec


KAWASAKI CONCOURS™ 14 CONCOURS™ 14 ABS Features:1,352cc Four-Cylinder, DOHC Engine with Variable Valve Timing (VVT) Tuned to provide smooth power across a wide rev range Variable valve timing...
READ MORE

Kawasaki Laverda Ghost


Tried this powerful bike during Teluk senangin ride. The bike is so powerful that it felt like controlling a wild beast. Although the exhaust does not have powerful superbikes sound but the power is...
READ MORE

KAWASAKI ER-6N SPECIFICATION


Apart from Ninja250r, kawasaki also release A Complete Knock Down version(CKD) of ER-6N with a very good price which is around 28k. the design is quite futuristic but the tail is somehow does not look...
READ MORE

Kawasaki ER-6N


Apart from Ninja250r, kawasaki also release A Complete Knock Down version(CKD) of ER-6N with a very good price which is around 28k. the design is quite futuristic but the tail is somehow does not look...
READ MORE

KAWASAKI NINJA 250 R


Last month..Kawasaki released a new ninja 250R. We can call it a new version of zzr. Although it does not sound like ZX2R but at least it has a superbike look. Below isthespecification of the bikefrom...
Last month..Kawasaki released a new ninja 250R. We can call it a new version of zzr. Although it does not sound like ZX2R but at least it has a superbike look. Below isthespecification of the bikefrom kawasaki.com

DOHC 249cc Parallel Twin-cylinder Engine
- Compact parallel-twin design offers good mass centralization for superior handling
- Tuned to deliver smooth, step-free power with an emphasis on low- and mid-range power for rider-friendly response
- Pistons feature reinforced heads and strengthening in the pin boss area for increased durability
- Thick piston (longitudinally) rings help minimize oil consumption
- Combustion chamber design optimized to maximize combustion efficiency and reduce emissions
- Ample high-rpm performance will please riders using the full range of the engine

Cylinder head
- Refined intake and exhaust ports contribute to good off-idle response and smooth power delivery
- Valve timing and lift were designed for strong low- and mid-range torque
- Direct valve actuation ensures reliable high-rpm operability
- Valves with thin heads and stems reduce reciprocating weight

Carburetor
- Twin Keihin CVK30 carburetors fine-tuned for good power feel and low fuel consumption

Exhaust system
- 2-into-1 system contributes to the Ninja 250R’s low- and mid-range torque and smooth, step-free power curve
- Slightly upswept silencer extensively tested to determine chamber size, connecting pipe length and diameter to achieve least noise and most power
- Meets strict emissions with dual catalyzers; one in the collector pipe and the other in the silencer
- Using two catalyzers minimizes the power loss
- Positioning the first catalyzer as close to the exhaust ports maximizes its efficiency as well

Reduced mechanical noise
- Cam chain tensioner with an automatic adjuster, like that on the KX™450F motocrosser, eliminates mechanical noise caused by a loose cam chain and reduces power-robbing friction loss
- Silencing mechanical noise allows the use of a freer flowing exhaust for a better sound quality
- Complex construction with reinforcing ribs helps eliminate airbox reverberation and reduce intake noise
- Air filter accessible from the side, for easy replacement

Liquid Cooling
- Latest generation Denso radiator offers superior cooling with minimal space and weight
- Ring-fan uses a quiet-running motor that also saves space
- Fins on the lower side of the crankcase further helps cool the engine

Six-speed Transmission / Clutch
- Involute splines reduce friction and backlash between gears and shafts for easier gear meshing and smooth shifting under power
- Spring-type clutch damper reduces jerkiness at very low speeds and minimizes shocks when rolling on and off the throttle for a smoother clutch feel
- Paper-base friction plates help increase clutch durability

Chassis
- Sturdy and durable diamond-style frame of thick-walled steel tubing offers confidence-inspiring stability at both high and low speeds
- Beefy swingarm bracket contributes to the frame’s rigidity and helps achieve an ideal chassis stiffness balance
- Square-tube swingarm with a 60 x 30mm cross-section further adds to rigidity

Suspension
- New 37mm telescopic front fork with firm settings contribute to the Ninja 250R’s smooth, stable handling and enhanced ride control
- Uni-Trak rear suspension compliments the rigid frame and re-tuned fork and provides great road holding ability
- Rear shock features 5-way adjustable preload, enabling ride height to be maintained whether riding solo or with a passenger

Wheels / Tires
- Features 17” wheels like its larger supersport brothers
- Low-profile sportbike tires on wide rims contribute to its easy, neutral handling at low speeds

Brakes
- Large-diameter, 290mm front petal disc and a balanced action two-piston caliper offers excellent braking performance and a natural, direct feeling at the lever
- Two-piston caliper grips the rear 220mm petal disc

Ergonomics
- Natural riding position with slightly forward-slanting seat and wide, raised handlebars

Bodywork
- Styling matches its larger-displacement Ninja supersport siblings
- Fit and finish of striking full-fairing bodywork on par with that of top-class Ninja supersports
- Aggressive dual-lamp headlight design, slim tail cowl and separate seats further enhance the supersport look
- Front cowling and windscreen offer the rider a substantial amount of wind protection
- Two helmet holders conveniently located under the rear seat
- Under-seat storage can hold a U-lock or similar device
- Two hooks under the tail and the rear passenger pegs provide anchor points for securing items to the rear of the bike

Instrumentation
- Instrument panel features an easy-to-read, large-face analog speedometer along with an analog tachometer, odometer, trip meter, fuel gauge and warning lights

I was hoping to grab one of this bikes but it is out ofmy budget. OTR price is around 20k. NVM, i just wait for the rivals to release competitive bikes to this one


Engine Type Four-stroke, liquid-cooled, DOHC, parallel twin

Displacement 249 cc

Bore & Stroke 62.0 x 41.2mm

Maximum Torque 22 Nm (2.24 kgf/m) 16.2 lb-ft/9,500 rpm

Compression Ratio 11.6:1

Carburetor Keihin CVK30 x 2

Ignition Digital

Transmission 6-Speed

Final Drive O-Ring Chain

Cooling Liquid

Frame Semi-double cradle, high-tensile steel

Rake/Trail 26 degrees / 3.2 in.

Front Tire Size 110/70-17

Rear Tire Size 130/70-17

Wheelbase 55.1 in.

Front Suspension / wheel travel 37mm hydraulic telescopic fork / 4.7 in.

Rear Suspension / wheel travel Bottom-Link Uni-Trak® with 5-way adjustable preload / 5.1 in.

Front Brake Type Single 290mm hydraulic disc with two-piston caliper

Rear Brake Single 220mm petal disc with two-piston caliper

Fuel Tank Capacity 4.8 gal.

Seat Height 30.5 in.

Dry Weight 333 lbs. / 337 lbs. (CA-model)

Overall length 82.1 in.

Overall width 28.1 in.

Overall height 43.7 in.

Color Lime Green, Ebony, Passion Red, Candy Plasma Blue

Warranty 12 months

Good Times™ Protection Plan 12, 24, 36, 48 months




Search Modification Here



Kawasaki Athlete 125 cc R Modifikasi

advertisement
Kawasaki Athlete 125 cc R Modifikasi
Kawasaki Athlete 125 cc R Modifikasi
For abutting kawasaki amateur is kawasaki athlete 125R or 150 cc, 150R.Like that was accepted by us kawasaki Amateur in armed the apparatus 125cc that could aftermath the ability of 10 adaptable phones to 8000 rpm. Indeed was not too big but remembered that the ambition kawasaki Athlete was the accepted avoid bazaar like Supra fit, Jupiter Z, Shogun or Honda Supra Fit.so as the giant's ability not all of his adhesive in this articulation but the achievability and abundance that played an important role. This was accurate with the attendance of bifold disc brakes that absolutely adjacent pengoprasian him added was accessible than the anchor tromol the actualization of this motor again additionally was additional up. The position of the abeyance monoshock that bisected of the beddy-bye (like to Ducati Monster 696) enabled the disciplinarian bermanufer added adjustable and added adequate compared to the motor with the vertical suspension.

Yamaha Mio

new striping yamaha mio 2009


Striping in the form of new yamaha Mio Soul is a solid flame with a dynamic color combination or dynamic color. result, the motor matic in the passion of young people now appear more sporty, dynamic and expressive. "This new view can be expected to provide inspiration for users Mio Soul,".yamaha mio contest

yamaha new Mio is displayed for the first exhibition in the Indonesian International Motor Show, July 24-August 2 2009.Perubahan color is actually light, minor entry in the category change. However, because the color changes made in the exterior frame and interior frame, automatically gives the impression that really is different with the yamaha Mio Soul.modifikasi striping yamaha mio soul

And attendance for the new body yamahanMio Soul is the first choice of color combinations that provide the color choices are really different. A clear, minor change made by Yamaha is certainly one of the proof of the innovation that Yamaha did not stop and always want to menjdi the first.
yamaha mio extreme modifications


yamaha mio extreme modifications is made to meet the wishes of the owner of the motor itself sepeda, scooter with extreme modification is nice if for the trophy in a contest of world-class automotive modifications. of financial costs in spend to modify the motor with very extreme indeed need a lot of money. and preparation for motorcycle insurance is not perdulikan. because if the motor insurance but already at the extreme modification by the insurance would not be useful anymore. black color on the entire body was yamaha mio impressed creepy but that's the impression to be in extreme highlight on this bike. yamaha mio scooter is the most common type of modification because, yamaha mio many devotees.

Not satisfied with the standard engine Yamaha Mio with a small not then make charcoal Herry broken.
Mio set to release in 2007 to give out more power more formidable, Herry Mio to home modifications Motor Studio, located in Jalan Raya Ciputat. 42 Land carman, South Jakarta.
There Herry met Doni brother brother-in-law who happens to have a lavatory. Without thinking long, Doni Ready to serve the desire of the sisters have a brother-in-law of Yamaha Mio is set to more than usual, but the fit is used daily. Wow, like what's desires, lets check this one!

Work was carried out, Doni who is raising the performance of gapek matic machine set up as the valve of the original Honda Tiger sized for 31mm and 27mm out valve in the valve and valve-per-Honda Sonic the dipapas half whorl.
And for additional bottle valve bronze costum in the dibubut turner,
"Sorry bro enggak bubut alone, I have utmost appliance," said Doni while laughing when detikOto in bengkelnya visited last week.

Sitting next to the valve, to the use of Doni this STD is the standard default alias Mio only.

"The reason for the STD tuh more-expensive and not very expensive, and the strength of strong deh tuh goods," Doni firm.

Continues at the Camshaft, Camshaft in this session Kawahara duration of 280 degrees in applied machine Mio. According to a Camshaft which pas aja, lagian goods market after the strength of this machine is guaranteed for the Mio, and for compression may be deliberately created seminimum namely 11.5:1.

This is deliberately not made too high to secure machines used daily and is not heat too quickly. Not until there are, the work also continues to sustain viscera gress attached to the engine Mio.

For that Izumi Piston 63.5 mm plus dibubuhkan Izumi Piston Ring for memaksimal if engine digeber abis-abisan dijalanan, and of course as penyeimbang Stang Piston and crutch As in the STD.

Doni was not satisfied until there are, garapannya forwarded to the use of ignition Coil YZ 125, CDI XP 302, NGK Platinum spark plugs, Accu MF 7 Ampere and the CVT, CVT Kitaco per 2000 RPM, House berkaliber Kitaco racing clutch, Roller Kitaco 12 G, and also canvas clutch RRGS Competition and strength that made for ratio 14: 41 so lightly on the lap top.

And for the Carburator, Carbu Keihin PE-28 carried the original Honda NSR SP applied, Feed Section of the fuel with better dimeter 28, and to close the valve and the exhaust is used Barra Tdr Racing Free Flow.

The result is sizeable, Herry was very pleased with the results of the work of Doni who are raising the capacity to be 185 cc engine. With the results of this motor have the owner can feel tarikkan engine motornya from the still point to 80 km / hr with 6 seconds with a time very easily.

"And forget mas, flower octane fuel with a high RON at least 94 or equivalent plus PERTAMAX Plus get steady," said Doni.




modifikasi mio in Europe, such as what? Geba Leisure Parts (GLP) try modifikasi mio through Yamaha Mio, owned a home Lamongan, East Java. "The concept leads to the European style because there matik many make it," said Gerie Nur Mayurie, home modifications GLP leaders in Bandung, West Java.

Evident once the results of this garapan GLP. Some details taken from a Peugeot Ludix, scooter popular in France. Models such as head lamp, and the body side of the slim Mio far more obese. According to the Ardhi Kupret, GLP blade design, the design is that Mio is stout and enggak cewek banget.

Sector around the side of the body appears to been serious. For example cover fan magnet participate gambot studied. Adjustments to the results pemelaran body, shortened the stern, making skubek berlambang tune this fork semok more.
View more body side so be sweet after such a pipe chrome trim. This is an innovation. "If the motor man looks cool with a deltabox. Well, this kind of framework of indirection," Gerie smile while discussing the use palsunya frame pipe 1 1 / 2 inches long with a 140 cm.

How installation is not difficult. Lis tied with bolts to the original order. This is to facilitate the unloading pasang.Untuk strengthen the European-style appearance, others took part untouched. As the bar, here's Gerie Yamaha X1R pinch, although must be custom because the body is less fit and rider position. How, add aluminum as 8 cm in the middle of the screen setang.Pemakaian determine participate. Here, GLP deliberately doff the cat from Spies Hecker. If too kinclong, said Gerie, terkesannya girly banget. So, before dilabur with candy red paint, body first be painted silver. To form the display screen doff, used a special type of varnish can cause these effects.

"In effect, become more motor serem. Kelemahannya kala kena rain or water, between striped body looks wet and enggak," I Gerie. *

yamaha Vixion 2010

Spesification new Yamaha V-Ixion 2010 Indonesia


New Yamaha V-Ixion pictureSpecifications Yamaha V-ixion
Contributed by Administrator
Wednesday, 07 July 2004
Last Updated Tuesday, 29 July 2008
MESIN
Model: 3C11
Engine type: Liquid cooled, 4T, SOHC
Step x Diameter: 57 x 58.7 (mm)
Cylinder volume: 149.8 cc
Comparison of Compression: 10.4: 1
Starter System: Kick & Electric Starter
Slow lap: 1300 - 1500 rpm
Power: 11:10 kw (14.88 HP) / 8.500 rpm
Torsi: 13:10 nm (1.34 Kgf.m) / 7500 rpm REFUELING
Material baker recommended: Unleaded Gasoline (Premium without reciprocal)
Tank capacity: 12 Ltr

OLI MESIN
Recommended oil: SAE 20W40 / SAE 20W50 API SERVICE SJ
Pelumasan System: Type of wet
Number of Engine Oil
- Replace regular (without removing the filter): 0.95 Ltr
- The periodic (with removing the filter): 1.00 Ltr
- The total: 1:15 Ltr

THROTLE BODY
Type: AC 28 / 1
Brand / Buatan: MIKUNI
Cam Chain: Silent Chain / 96
Tensioner: Automatic
Cleft Valve
- Log In: 0:10 ~ 0:14 mm
- Discard: 0:20 ~ 0:24 mm

Dimensions
Width: 705 mm
Height: 1.035 mm
Length: 2.000 mm
Sit high place: 790 mm
Wheel distance axis: 1.282 mm
Caster angle: 260
Trail: 100 mm
Lowest distance to the ground: 167 mm
Net Weight: 114 Kg
Gross Weight (+ liquid): 125 Kg

AIR FILTER
Type: Dry Type

Plug
Type / Buatan: CR 8 E (NGK) / U 24 ESR-N (DENSO)
Plug gap: 0.7 ~ 0.8 mm

Electrical
Ignition timing: 100 / 1.400 rpm
Prisoners pick up coil: 248 ~ 372 ohm
Prisoners primary coil: 2:16 ~ 2.64 ohm
Arrest secondary oil: 8.64 ~ 12.96 ohm
Fuse (Sekring): 20 Ampere
Bulb (bulb) light front: 12V 35/35W, 12V 5W (lamp dusk)
Bulb (bulb) behind the lamp: 12V 5/21W

Battery
Type: MF YTZ5S BATTERY
Capacity: 12V 3.5 Ampere

Suzuki Thunder 250 cc Street Fighter Modifikasi Motor Juara
Puji Utomo was not abandoned adequate at amphitheatre on the computer. Praise aswell because it aswell has a ambrosial agrarian apperception if modifying the alembic mounts both.

Look at the accessory of Suzuki Thunder 250 cc alerts in 2002 he had this. With a agrarian imagination, Praise be able to accomplish the accessory of the determined horse of Japan has afflicted drastically.

"The absorption of this bike is actually original. No follows the actualization of accession motor. Pure from his own thoughts," said the artist of Custom Tauco modification workshops, Topo Goedel Atmodjo that helps Praise activity to apprehend it.

Well aback this is the 'wild project', it is not hasty that motor architectonics that has four bloom aspect is not at all affiliated to motors that acquire been produced by a authentic motor manufacturer.

"Because the ancient architectonics and bogus their own from 0.8 mm galvanized basin with the absorption of Street Fighter 'stump', 'Topo beber.

Street Fighter 'stump'? That is what? "Yes, that is, the body's motor is absolute akin with the advancing actualization of Street Fighter in the design.

Motor Ducati Diavel 2011 is New Monster

Motor Ducati Diavel 2011 is New Monster
Once awash into the issue, a architect of motor action Ducati motorcycle assuredly accessible about her new sound. They plan to clearly acquaint Diavel Ducati motorcycles at the alpha of next month.

Muscle cruiser-style motorcycle is accepted to be alien at the celebrated motor appearance EICMA Appearance to be captivated in Milan.
Ducati Diavel acreage itself is a aboriginal Ducati motorcycles are already crowded
discussed in cyberspace back some time ago. The photos spyshoot this motor is already a lot of eyes.

As quoted by the official Ducati website, Diavel own name appears in the action of motor development. When the ancestor was finished, and visits by engineers and technicians Ducati for the aboriginal time, one of them cried with a accent of Bologna.

"Ignurànt comm 'al Diavel!" he said. When translated it means. 'Satan, like the devil'.
Since again the name Diavel into the centralized name acclimated by Ducati for the 'monster' newest.
But unfortunately, it is not assertive what affectionate of blueprint that will be agitated ancestors of the Multistrada, Monster, 696 and 1198 of this.
This motor reportedly will backpack Testatretta apparatus which will be able with assorted appearance alignment from ABS, Traction Control up to Ducati Ducati Riding Modes.

Selasa, 26 Oktober 2010

Rocket engine

A rocket engine, or simply "rocket," is a jet engine[1] that uses only propellant mass for forming its high speed propulsive jet. Rocket engines are reaction engines and obtain thrust in accordance with Newton's third law. Since they need no external material to form their jet, rocket engines can be used for spacecraft propulsion as well as terrestrial uses, such as missiles. Most rocket engines are internal combustion engines, although non combusting forms also exist.
Rocket engines as a group, have the highest exhaust velocities, are by far the lightest, and are the most energy efficient (at least at very high speed) of all types of jet engines. However, for the thrust they give, due to the high exhaust velocity and relatively low specific energy of rocket propellant, they consume propellant very rapidly.

Principle of operation

How rocket engines work
Rocket engines give part of their thrust due to unopposed pressure on the combustion chamber
Rocket engines produce thrust by the expulsion of a high-speed fluid exhaust. This fluid is nearly always a gas which is created by high pressure (10-200 bar) combustion of solid or liquid propellants, consisting of fuel and oxidiser components, within a combustion chamber.
The fluid exhaust is then passed through a propelling nozzle which typically uses the heat energy of the gas to accelerate the exhaust to very high speed, and the reaction to this pushes the engine in the opposite direction.
In rocket engines, high temperatures and pressures are highly desirable for good performance as this permits a longer nozzle to be fitted to the engine, which gives higher exhaust speeds, as well as giving better thermodynamic efficiency.

Introducing propellant into a combustion chamber

Rocket propellant is mass that is stored, usually in some form of propellant tank, prior to being ejected from a rocket engine in the form of a fluid jet to produce thrust.
Chemical rocket propellants are most commonly used, which undergo exothermic chemical reactions which produce hot gas which is used by a rocket for propulsive purposes. Alternatively, a chemically inert reaction mass can be heated using a high-energy power source via a heat exchanger, and then no combustion chamber is used.
A solid rocket motor.
Solid rocket propellants are prepared as a mixture of fuel and oxidizing components called 'grain' and the propellant storage casing effectively becomes the combustion chamber. Liquid-fueled rockets typically pump separate fuel and oxidiser components into the combustion chamber, where they mix and burn. Hybrid rocket engines use a combination of solid and liquid or gaseous propellants. Both liquid and hybrid rockets use injectors to introduce the propellant into the chamber. These are often an array of simple jets- holes through which the propellant escapes under pressure; but sometimes may be more complex spray nozzles. When two or more propellants are injected the jets usually deliberately collide the propellants as this breaks up the flow into smaller droplets that burn more easily.

Combustion chamber

For chemical rockets the combustion chamber is typically just a cylinder, and flame holders are rarely used. The dimensions of the cylinder are such that the propellant is able to combust thoroughly; different propellants require different combustion chamber sizes for this to occur. This leads to a number called L * :
L^* = \frac {V_c} {A_t}
where:
  • Vc is the volume of the chamber
  • At is the area of the throat
L* is typically in the range of 25–60 inches (0.63–1.5 m).
The combination of temperatures and pressures typically reached in a combustion chamber is usually extreme by any standards. Unlike in air-breathing jet engines, no atmospheric nitrogen is present to dilute and cool the combustion, and the temperature can reach true stoichiometric. This, in combination with the high pressures, means that the rate of heat conduction through the walls is very high.

Rocket nozzles

Typical temperatures (T) and pressures (p) and speeds (v) in a De Laval Nozzle
The large bell or cone shaped expansion nozzle gives a rocket engine its characteristic shape.
In rockets the hot gas produced in the combustion chamber is permitted to escape from the combustion chamber through an opening (the "throat"), within a high expansion-ratio 'de Laval nozzle'.
Provided sufficient pressure is provided to the nozzle (about 2.5-3x above ambient pressure) the nozzle chokes and a supersonic jet is formed, dramatically accelerating the gas, converting most of the thermal energy into kinetic energy.
The exhaust speeds vary, depending on the expansion ratio the nozzle is designed to give, but exhaust speeds as high as ten times the speed of sound of sea level air are not uncommon.
Rocket thrust is caused by pressures acting in the combustion chamber and nozzle. From Newtons third law, equal and opposite pressures act on the exhaust, and this accelerates it to high speeds.
About half of the rocket engine's thrust comes from the unbalanced pressures inside the combustion chamber and the rest comes from the pressures acting against the inside of the nozzle (see diagram). As the gas expands (adiabatically) the pressure against the nozzle's walls forces the rocket engine in one direction while accelerating the gas in the other.

Propellant efficiency

For a rocket engine to be propellant efficient, it is important that the maximum pressures possible be created on the walls of the chamber and nozzle by a specific amount of propellant; as this is the source of the thrust. This can be achieved by all of:
  • heating the propellant to as high a temperature as possible (using a high energy fuel, containing hydrogen and carbon and sometimes metals such as aluminium, or even using nuclear energy)
  • using a low specific density gas (as hydrogen rich as possible)
  • using propellants which are, or decompose to, simple molecules with few degrees of freedom to maximise translational velocity
Since all of these things minimise the mass of the propellant used, and since pressure is proportional to the mass of propellant present to be accelerated as it pushes on the engine, and since from Newton's third law the pressure that acts on the engine also reciprocally acts on the propellant, it turns out that for any given engine the speed that the propellant leaves the chamber is unaffected by the chamber pressure (although the thrust is proportional). However, speed is significantly affected by all three of the above factors and the exhaust speed is an excellent measure of the engine propellant efficiency. This is termed exhaust velocity, and after allowance is made for factors that can reduce it, the effective exhaust velocity is one of the most important parameters of a rocket engine (although weight, cost, ease of manufacture etc. are usually also very important).
For aerodynamic reasons the flow goes sonic ("chokes") at the narrowest part of the nozzle, the 'throat'. Since the speed of sound in gases increases with the square root of temperature, the use of hot exhaust gas greatly improves performance. By comparison, at room temperature the speed of sound in air is about 340 m/s while the speed of sound in the hot gas of a rocket engine can be over 1700 m/s; much of this performance is due to the higher temperature, but additionally rocket propellants are chosen to be of low molecular mass, and this also gives a higher velocity compared to air.
Expansion in the rocket nozzle then further multiplies the speed, typically between 1.5 and 2 times, giving a highly collimated hypersonic exhaust jet. The speed increase of a rocket nozzle is mostly determined by its area expansion ratio—the ratio of the area of the throat to the area at the exit, but detailed properties of the gas are also important. Larger ratio nozzles are more massive but are able to extract more heat from the combustion gases, increasing the exhaust velocity.
Nozzle efficiency is affected by operation in the atmosphere because atmospheric pressure changes with altitude; but due to the supersonic speeds of the gas exiting from a rocket engine, the pressure of the jet may be either below or above ambient, and equilibrium between the two is not reached at all altitudes (See Diagram).

Back pressure and optimal expansion

For optimal performance the pressure of the gas at the end of the nozzle should just equal the ambient pressure: if the exhaust's pressure is lower than the ambient pressure, then the vehicle will be slowed by the difference in pressure between the top of the engine and the exit; on the other hand, if the exhaust's pressure is higher, then exhaust pressure that could have been converted into thrust is not converted, and energy is wasted.
To maintain this ideal of equality between the exhaust's exit pressure and the ambient pressure, the diameter of the nozzle would need to increase with altitude, giving the pressure a longer nozzle to act on (and reducing the exit pressure and temperature). This increase is difficult to arrange in a lightweight fashion, although is routinely done with other forms of jet engines. In rocketry a lightweight compromise nozzle is generally used and some reduction in atmospheric performance occurs when used at other than the 'design altitude' or when throttled. To improve on this, various exotic nozzle designs such as the plug nozzle, stepped nozzles, the expanding nozzle and the aerospike have been proposed, each providing some way to adapt to changing ambient air pressure and each allowing the gas to expand further against the nozzle, giving extra thrust at higher altitudes.
When exhausting into a sufficiently low ambient pressure (vacuum) several issues arise. One is the sheer weight of the nozzle- beyond a certain point, for a particular vehicle, the extra weight of the nozzle outweighs any performance gained. Secondly, as the exhaust gases adiabatically expand within the nozzle they cool, and eventually some of the chemicals can freeze, producing 'snow' within the jet. This causes instabilities in the jet and must be avoided.
On a De Laval nozzle, exhaust gas flow detachment will occur in a grossly over-expanded nozzle. As the detachment point will not be uniform around the axis of the engine, a side force may be imparted to the engine. This side force may change over time and result in control problems with the launch vehicle

Thrust vectoring
Many engines require the overall thrust to change direction over the length of the burn. A number of different ways to achieve this have been flown:
  • The entire engine is mounted on a hinge or gimbal and any propellant feeds reach the engine via low pressure flexible pipes or rotary couplings.
  • Just the combustion chamber and nozzle is gimbled, the pumps are fixed, and high pressure feeds attach to the engine
  • multiple engines (often canted at slight angles) are deployed but throttled to give the overall vector that is required, giving only a very small penalty
  • fixed engines with vernier thrusters
  • high temperature vanes held in the exhaust that can be tilted to deflect the jet

Overall rocket engine performance

Rocket technology can combine very high thrust (meganewtons), very high exhaust speeds (around 10 times the speed of sound in air at sea level) and very high thrust/weight ratios (>100) simultaneously as well as being able to operate outside the atmosphere, and while permitting the use of low pressure and hence lightweight tanks and structure.
Rockets can be further optimised to even more extreme performance along one or more of these axes at the expense of the others.

Specific impulse

The most important metric for the efficiency of a rocket engine is impulse per unit of propellant, this is called specific impulse (usually written Isp). This is either measured as a speed (the effective exhaust velocity Ve in metres/second or ft/s) or as a time (seconds). An engine that gives a large specific impulse is normally highly desirable.
The specific impulse that can be achieved is primarily a function of the propellant mix (and ultimately would limit the specific impulse), but practical limits on chamber pressures and the nozzle expansion ratios reduce the performance that can be achieved.

Typical performances of common propellants
Propellant mix Vacuum Isp (seconds) Effective exhaust velocity (m/s)
liquid oxygen/
liquid hydrogen
455 4462
liquid oxygen/
kerosene (RP-1)
358 3510
nitrogen tetroxide/
hydrazine
305 2993
n.b. All performances at a nozzle expansion ratio of 40

Net thrust

Below is an approximate equation for calculating the net thrust of a rocket engine:
F_n = \dot{m}\;V_{e} = \dot{m}\;V_{e-act} + A_{e}(P_{e} - P_{amb})[2]
where:
 \dot{m} = \,exhaust gas mass flow
V_{e} =\,effective exhaust velocity
V_{e-act} =\,actual jet velocity at nozzle exit plane
A_{e} =\,flow area at nozzle exit plane (or the plane where the jet leaves the nozzle if separated flow)
P_{e} =\,static pressure at nozzle exit plane
P_{amb} =\,ambient (or atmospheric) pressure
Since, unlike a jet engine, a conventional rocket motor lacks an air intake, there is no 'ram drag' to deduct from the gross thrust. Consequently the net thrust of a rocket motor is equal to the gross thrust (apart from static back pressure).
The \dot{m}\;V_{e-act}\, term represents the momentum thrust, which remains constant at a given throttle setting, whereas the A_{e}(P_{e} - P_{amb})\, term represents the pressure thrust term. At full throttle, the net thrust of a rocket motor improves slightly with increasing altitude, because as atmospheric pressure decreases with altitude, the pressure thrust term increases. At the surface of the Earth the pressure thrust may be reduced by up to 30%,depending on the engine design. This reduction drops roughly exponentially to zero with increasing altitude.
Maximum thrust for a rocket engine is achieved by maximizing the momentum contribution of the equation without incurring penalties from over expanding the exhaust. This occurs when Pe = Pamb. Since ambient pressure changes with altitude, most rocket engines spend very little time operating at peak efficiency.

If the pressure of the exhaust jet varies from atmospheric pressure, nozzles can be said to be (top to bottom):
Underexpanded
Ambient
Overexpanded
Grossly overexpanded
If under or overexpanded then loss of efficiency occurs, grossly overexpanded nozzles lose less efficiency, but can cause mechanical issues with the nozzle. Rockets become progressively more underexpanded as they gain altitude. Note that almost all rocket engines will be momentarily grossly overexpanded during startup in an atmosphere.[3]

Vacuum Isp

Due to the specific impulse varying with pressure, a quantity that is easy to compare and calculate with is useful. Because rockets choke at the throat, and because the supersonic exhaust prevents external pressure influences travelling upstream, it turns out that the pressure at the exit is ideally exactly proportional to the propellant flow  \dot{m}, provided the mixture ratios and combustion efficiencies are maintained. It is thus quite usual to rearrange the above equation slightly:
 F_{vac} = C_f \dot{m} c^*[4]
and so define the vacuum Isp to be:
Vevac = Cfc *
Where:
c^* =\, the speed of sound constant at the throat
C_f =\, the thrust coefficient constant of the nozzle (typically about 2)
And hence:
 F_n = \dot{m} V_{evac} - A_{e} P_{amb}Throttling
Rockets can be throttled by controlling the propellant combustion rate  \dot{m} (usually measured in kg/s or lb/s). In liquid and hybrid rockets, the propellant flow entering the chamber is controlled using valves, in solid rockets it is controlled by changing the area of propellant that is burning and this can be designed into the propellant grain (and hence cannot be controlled in real-time).
Rockets can usually be throttled down to an exit pressure of about one-third of ambient pressure (often limited flow separation in nozzles) and up to a maximum limit determined only by the mechanical strength of the engine.
In practice, the degree to which rockets can be throttled varies greatly, but most rockets can be throttled by a factor of 2 without great difficulty; the typical limitation is combustion stability, as for example, injectors need a minimum pressure to avoid triggering damaging oscillations (chugging or combustion instabilities); but injectors can often be optimised and tested for wider ranges. Solid rockets can be throttled by using shaped grains that will vary their surface area over the course of the burn.

Energy efficiency

Rocket energy efficiency as a function of vehicle speed divided by effective exhaust speed
Rocket engine nozzles are surprisingly efficient heat engines for generating a high speed jet, as a consequence of the high combustion temperature and high compression ratio. Rocket nozzles give an excellent approximation to adiabatic expansion which is a reversible process, and hence they give efficiencies which are very close to that of the Carnot cycle. Given the temperatures reached, over 60% efficiency can be achieved with chemical rockets.
For a vehicle employing a rocket engine the energetic efficiency is very good if the vehicle speed approaches or somewhat exceeds the exhaust velocity (relative to launch); but at low speeds the energy efficiency goes to 0% at zero speed (as with all jet propulsion.) See Rocket energy efficiency for more details.

Thrust to weight ratio

Rockets, of all the jet engines, indeed of essentially all engines, have the highest thrust to weight ratio. This is especially true for liquid rocket engines.
This high performance is due to the small volume of pressure vessels that make up the engine- the pumps, pipes and combustion chambers involved. The lack of inlet duct and the use of dense liquid propellant allows the pressurisation system to be small and lightweight, whereas duct engines have to deal with air which has a density about one thousand times lower.
Jet or Rocket engine↓ Mass, kg↓ Jet or rocket thrust, kN↓ Thrust-to-weight ratio↓
RD-0410 nuclear rocket engine[5][6] 2000 35.2 1.8
J-58 (SR-71 Blackbird jet engine)[7][8] 2722 150 5.2
Concorde's Rolls-Royce/Snecma Olympus 593
turbojet with reheat[9][10]
3175 169.2 5.4
RD-0750 rocket engine, three-propellant mode[11] 4621 1413 31.2
RD-0146 rocket engine[5] 260 98 38.5
Space Shuttle's SSME rocket engine[12] 3177 2278 73.2
RD-180 rocket engine[13] 5393 4152 78.6
F-1 (Saturn V first stage)[14] 8391 7740.5 94.1
NK-33 rocket engine[15] 1222 1638 136.8
Rocket thrusts are vacuum thrusts unless otherwise noted
Of the liquid propellants used, density is worst for liquid hydrogen. Although this propellant is marvellous in many ways, it has a very low density, about one fourteenth that of water. This makes the turbopumps and pipework larger and heavier, and this is reflected in the thrust-to-weight ratio of engines that use it (for example the SSME) compared to those that do not (NK-33).

Cooling

For efficiency reasons, and because they physically can, rockets run with combustion temperatures that can reach ~3500 K (~5800 °F)(~3227 °C).
Most other jet engines have gas turbines in the hot exhaust. Due to their larger surface area, they are harder to cool and hence there is a need to run the combustion processes at much lower temperatures, losing efficiency. In addition duct engines use air as an oxidant, which contains 80% largely unreactive nitrogen, which dilutes the reaction and lowers the temperatures. Rockets have none of these inherent disadvantages.
Therefore in rockets temperatures employed are very often far higher than the melting point of the nozzle and combustion chamber materials, two exceptions are graphite and tungsten (~1200 K for copper), however both are subject to oxidation if not protected. Indeed many construction materials can make perfectly acceptable propellants in their own right. It is important that these materials be prevented from combusting, melting or vaporising to the point of failure. This is sometimes somewhat facetiously termed an 'engine rich exhaust'. Materials technology could potentially place an upper limit on the exhaust temperature of chemical rockets.
Alternatively, rockets may use more common construction materials such as aluminium, steel, nickel or copper alloys and employ cooling systems that prevent the construction material itself becoming too hot. Regenerative cooling, where the propellant is passed through tubes around the combustion chamber or nozzle, and other techniques, such as curtain cooling or film cooling, are employed to give longer nozzle and chamber life. These techniques ensure that a gaseous thermal boundary layer touching the material is kept below the temperature which would cause the material to catastrophically fail.
In rockets, the heat fluxes that can pass through the wall are among the highest in engineering, fluxes are generally in the range of 1-200 MW/m^2. The strongest heat fluxes are found at the throat, which often sees twice that found in the associated chamber and nozzle. This is due to the combination of high speeds (which gives a very thin boundary layer), and although lower than the chamber, the high temperatures seen there. (See rocket nozzles above for temperatures in nozzle).
In rockets the coolant methods include:
  1. uncooled (used for short runs mainly during testing)
  2. ablative walls (walls are lined with a material that is continuously vaporised and carried away).
  3. radiative cooling (the chamber becomes almost white hot and radiates the heat away)
  4. dump cooling (a propellant, usually hydrogen, is passed around the chamber and dumped)
  5. regenerative cooling (liquid rockets use the fuel, or occasionally the oxidiser, to cool the chamber via a cooling jacket before being injected)
  6. curtain cooling (propellant injection is arranged so the temperature of the gases is cooler at the walls)
  7. film cooling (surfaces are wetted with liquid propellant, which cools as it evaporates)
In all cases the cooling effect that prevents the wall from being destroyed is caused by a thin layer of insulating fluid (a boundary layer) that is in contact with the walls that is far cooler than the combustion temperature. Provided this boundary layer is intact the wall will not be damaged.
Disruption of the boundary layer may occur during cooling failures or combustion instabilities, and wall failure typically occurs soon after.
With regenerative cooling a second boundary layer is found in the coolant channels around the chamber. This boundary layer thickness needs to be as small as possible, since the boundary layer acts as an insulator between the wall and the coolant. This may be achieved by making the coolant velocity in the channels as high as possible.
In practice, regenerative cooling is nearly always used in conjunction with curtain cooling and/or film cooling.
Liquid fuelled engines are often run fuel rich, which results in a cooler burning exhaust. Cooler exhaust reduces heat loads on the engine allowing lower cost materials, a simplified cooling system, and a lower performance engine.
Mechanical issues
Rocket combustion chambers are normally operated at fairly high pressure, typically 10-200 bar (1 to 20 MPa, 150-3000 psi). When operated within significant atmospheric pressure, higher combustion chamber pressures give better performance by permitting a larger and more efficient nozzle to be fitted without it being grossly overexpanded.
However, these high pressures cause the outermost part of the chamber to be under very large hoop stresses – rocket engines are pressure vessels.
Worse, due to the high temperatures created in rocket engines the materials used tend to have a significantly lowered working tensile strength.
In addition, significant temperature gradients are set up in the walls of the chamber and nozzle, these cause differential expansion of the inner liner that create internal stresses.

Acoustic issues

In addition, the extreme vibration and acoustic environment inside a rocket motor commonly result in peak stresses well above mean values, especially in the presence of organ pipe-like resonances and gas turbulence.[citation needed]

Combustion instabilities

The combustion may display undesired instabilities, of sudden or periodic nature. The pressure in the injection chamber may increase until the propellant flow through the injector plate decreases; a moment later the pressure drops and the flow increases, injecting more propellant in the combustion chamber which burns a moment later, and again increases the chamber pressure, repeating the cycle. This may lead to high-amplitude pressure oscillations, often in ultrasonic range, which may damage the motor. Oscillations of ±200 psi at 25 kHz were the cause of failures of early versions of the Titan II missile second stage engines. The other failure mode is a deflagration to detonation transition; the supersonic pressure wave formed in the combustion chamber may destroy the engine.[16]
The combustion instabilities can be provoked by remains of cleaning solvents in the engine, reflected shock wave, initial instability after ignition, explosion near the nozzle that reflects into the combustion chamber, and many more factors. In stable engine designs the oscillations are quickly suppressed; in unstable designs they persist for prolonged periods. Oscillation suppressors are commonly used.
Periodic variations of thrust, caused by combustion instability or longitudinal vibrations of structures between the tanks and the engines which modulate the propellant flow, are known as "pogo oscillations" or "pogo", named after the pogo stick.
Three different types of combustion instabilities occur:
Chugging
This is a low frequency oscillation at a few Hertz in chamber pressure usually caused by pressure variations in feed lines due to variations in acceleration of the vehicle. This can cause cyclic variation in thrust, and the effects can vary from merely annoying to actually damaging the payload or vehicle. Chugging can be minimised by using gas-filled damping tubes on feed lines of high density propellants.
Buzzing
This can be caused due to insufficient pressure drop across the injectors. It generally is mostly annoying, rather than being damaging. However, in extreme cases combustion can end up being forced backwards through the injectors – this can cause explosions with monopropellants.
Screeching
This is the most immediately damaging, and the hardest to control. It is due to acoustics within the combustion chamber that often couples to the chemical combustion processes that are the primary drivers of the energy release,[17] and can lead to unstable resonant "screeching" that commonly leads to catastrophic failure due to thinning of the insulating thermal boundary layer.[18] Such effects are very difficult to predict analytically during the design process, and have usually been addressed by expensive, time consuming and extensive testing, combined with trial and error remedial correction measures.
Screeching is often dealt with by detailed changes to injectors, or changes in the propellant chemistry, or vaporizing the propellant before injection, or use of Helmholtz dampers within the combustion chambers to change the resonant modes of the chamber.
Testing for the possibility of screeching is sometimes done by exploding small explosive charges outside the combustion chamber with a tube set tangentially to the combustion chamber near the injectors to determine the engine's impulse response and then evaluating the time response of the chamber pressure- a fast recovery indicates a stable system.

Exhaust noise

For all but the very smallest sizes, rocket exhaust compared to other engines is generally very noisy. As the hypersonic exhaust mixes with the ambient air, shock waves are formed. The Space Shuttle generates over 200 dB(A) of noise around its base.
The Saturn V launch was detectable on seismometers a considerable distance from the launch site[citation needed]. The sound intensity from the shock waves generated depends on the size of the rocket and on the exhaust velocity. Such shock waves seem to account for the characteristic crackling and popping sounds produced by large rocket engines when heard live. These noise peaks typically overload microphones and audio electronics, and so are generally weakened or entirely absent in recorded or broadcast audio reproductions. For large rockets at close range, the acoustic effects could actually kill.[19]
More worryingly for space agencies, such sound levels can also damage the launch structure, or worse, be reflected back at the comparatively delicate rocket above. This is why so much water is typically used at launches. The water spray changes the acoustic qualities of the air and reduces or deflects the sound energy away from the rocket.
Generally speaking noise is most intense when a rocket is close to the ground, since the noise from the engines radiates up away from the plume, as well as reflecting off the ground. Also, when the vehicle is moving slowly, little of the chemical energy input to the engine can go into increasing the kinetic energy of the rocket (since useful power P transmitted to the vehicle is P = F * V for thrust F and speed V). Then the largest portion of the energy is dissipated in the exhaust's interaction with the ambient air, producing noise. This noise can be reduced somewhat by flame trenches with roofs, by water injection around the plume and by deflecting the plume at an angle.

Testing

Rocket engines are usually statically tested at a test facility before being put into production. For high altitude engines, either a shorter nozzle must be used, or the rocket must be tested in a large vacuum chamber.

 Safety

Rockets have a reputation for unreliability and danger; especially catastrophic failures. Contrary to this reputation, carefully designed rockets can be made arbitrarily reliable. In military use, rockets are not unreliable. However, one of the main non-military uses of rockets is for orbital launch. In this application, the premium is on minimum weight, and it is difficult to achieve high reliability and low weight simultaneously. In addition, if the number of flights launched is low, there is a very high chance of a design, operations or manufacturing error causing destruction of the vehicle. Essentially all launch vehicles are test vehicles by normal aerospace standards (as of 2006).
The X-15 rocket plane achieved a 0.5% failure rate, with a single catastrophic failure during ground test, and the SSME has managed to avoid catastrophic failures in over 350 engine-flights.

Chemistry

Rocket propellants require a high specific energy (energy per unit mass), because ideally all the reaction energy appears as kinetic energy of the exhaust gases, and exhaust velocity is the single most important performance parameter of an engine, on which vehicle performance depends.
Aside from inevitable losses and imperfections in the engine, incomplete combustion, etc., after specific reaction energy, the main theoretical limit reducing the exhaust velocity obtained is that, according to the laws of thermodynamics, a fraction of the chemical energy may go into rotation of the exhaust molecules, where it is unavailable for producing thrust. Monatomic gases like helium have only three degrees of freedom, corresponding to the three dimensions of space, {x,y,z}, and only such spherically symmetric molecules escape this kind of loss. A diatomic molecule like H2 can rotate about either of the two axes perpendicular to the one joining the two atoms, and as the equipartition law of statistical mechanics demands that the available thermal energy be divided equally among the degrees of freedom, for such a gas in thermal equilibrium 3/5 of the energy can go into unidirectional motion, and 2/5 into rotation. A triatomic molecule like water has six degrees of freedom, so the energy is divided equally among rotational and translational degrees of freedom. For most chemical reactions the latter situation is the case. This issue is traditionally described in terms of the ratio, gamma, of the specific heat of the gas at constant volume to that at constant pressure. The rotational energy loss is largely recovered in practice if the expansion nozzle is large enough to allow the gases to expand and cool sufficiently, the function of the nozzle being to convert the random thermal motions of the molecules in the combustion chamber into the unidirectional translation that produces thrust. As long as the exhaust gas remains in equilibrium as it expands, the initial rotational energy will be largely returned to translation in the nozzle.
Although the specific reaction energy per unit mass of reactants is key, low mean molecular weight in the reaction products is also important in practice in determining exhaust velocity. This is because the high gas temperatures in rocket engines pose serious problems for the engineering of survivable motors. Because temperature is proportional to the mean energy per molecule, a given amount of energy distributed among more molecules of lower mass permits a higher exhaust velocity at a given temperature. This means low atomic mass elements are favoured. Liquid hydrogen (LH2) and oxygen (LOX, or LO2), are the most effective propellants in terms of exhaust velocity that have been widely used to date, though a few exotic combinations involving boron or liquid ozone are potentially somewhat better in theory if various practical problems could be solved.[20]
It is important to note in computing the specific reaction energy, that the entire mass of the propellants, including both fuel and oxidizer, must be included. The fact that air-breathing engines are typically able to obtain oxygen "for free" without having to carry it along, accounts for one factor of why air-breathing engines are very much more propellant-mass efficient, and one reason that rocket engines are far less suitable for most ordinary terrestrial applications. Fuels for automobile or turbojet engines, utilize atmospheric oxygen and so have a much better effective energy output per unit mass of propellant that must be carried, but are similar per unit mass of fuel.
Computer programs that predict the performance of propellants in rocket engines are available.[21]

Ignition

With liquid and hybrid rockets, immediate ignition of the propellant(s) as they first enter the combustion chamber is essential.
With liquid propellants (but not gaseous), failure to ignite within milliseconds usually causes too much liquid propellant to be within the chamber, and if/when ignition occurs the amount of hot gas created will often exceed the maximum design pressure of the chamber. The pressure vessel will often fail catastrophically. This is sometimes called a hard start.
Ignition can be achieved by a number of different methods; a pyrotechnic charge can be used, a plasma torch can be used, or electric spark plugs may be employed. Some fuel/oxidizer combinations ignite on contact (hypergolic), and non-hypergolic fuels can be "chemically ignited" by priming the fuel lines with hypergolic propellants (popular in Russian engines).
Gaseous propellants generally will not cause hard starts, with rockets the total injector area is less than the throat thus the chamber pressure tends to ambient prior to ignition and high pressures cannot form even if the entire chamber is full of flammable gas at ignition.
Solid propellants are usually ignited with one-shot pyrotechnic devices.
Once ignited, rocket chambers are self sustaining and igniters are not needed. Indeed chambers often spontaneously reignite if they are restarted after being shut down for a few seconds. However, when cooled, many rockets cannot be restarted without at least minor maintenance, such as replacement of the pyrotechnic igniter.

Plume physics

Armadillo aerospace's quad vehicle showing visible banding (shock diamonds) in the exhaust plume
Rocket plume varies depending on the rocket engine, design altitude, altitude, thrust and other factors.
Carbon rich exhausts from kerosene fuels are often orange in colour due to the black body radiation of the unburned particles, in addition to the blue Swan bands. Peroxide oxidiser based rockets and hydrogen rocket plumes contain largely steam and are nearly invisible to the naked eye but shine brightly in the ultraviolet and infrared. Plumes from solid rockets can be highly visible as the propellant frequently contains metals such as elemental aluminium which burns with a orange-white flame and adds energy to the combustion process.
Some exhausts, notably alcohol fuelled rockets, can show visible shock diamonds. These are due to cyclic variations in the plume pressure relative to ambient creating shock waves that form 'mach disks'.
The shape of the plume varies from the design altitude, at high altitude all rockets are grossly under-expanded, and a quite small percentage of exhaust gases actually end up expanding forwards.

Types of rocket engines

Physically powered

Type Description Advantages Disadvantages
water rocket Partially filled pressurised carbonated drinks container with tail and nose weighting Very simple to build Altitude typically limited to a few hundred feet or so (world record is 623 meters/2044 feet)
cold gas thruster A non combusting form, used for vernier thrusters Non contaminating exhaust Extremely low performance
hot water rocket Hot water is stored in a tank at high temperature/pressure and turns to steam in nozzle Simple, fairly safe, under 200 seconds Isp Low overall performance due to heavy tank

Chemically powered

Type Description Advantages Disadvantages
Solid rocket Ignitable, self sustaining solid fuel/oxidiser mixture ("grain") with central hole and nozzle Simple, often no moving parts, reasonably good mass fraction, reasonable Isp. A thrust schedule can be designed into the grain. Once lit, extinguishing it is difficult although often possible, cannot be throttled in real time; handling issues from ignitable mixture, lower performance than liquid rockets, if grain cracks it can block nozzle with disastrous results, cracks burn and widen during burn. Refuelling grain harder than simply filling tanks, Lower specific Impulse than Liquid Rockets.
Hybrid rocket Separate oxidiser/fuel, typically oxidiser is liquid and kept in a tank, the other solid with central hole Quite simple, solid fuel is essentially inert without oxidiser, safer; cracks do not escalate, throttleable and easy to switch off. Some oxidisers are monopropellants, can explode in own right; mechanical failure of solid propellant can block nozzle (very rare with rubberised propellant), central hole widens over burn and negatively affects mixture ratio.
Monopropellant rocket Propellant such as Hydrazine, Hydrogen Peroxide or Nitrous Oxide, flows over catalyst and exothermically decomposes and hot gases are emitted through nozzle Simple in concept, throttleable, low temperatures in combustion chamber catalysts can be easily contaminated, monopropellants can detonate if contaminated or provoked, Isp is perhaps 1/3 of best liquids
Liquid Bipropellant rocket Two fluid (typically liquid) propellants are introduced through injectors into combustion chamber and burnt Up to ~99% efficient combustion with excellent mixture control, throttleable, can be used with turbopumps which permits incredibly lightweight tanks, can be safe with extreme care Pumps needed for high performance are expensive to design, huge thermal fluxes across combustion chamber wall can impact reuse, failure modes include major explosions, a lot of plumbing is needed.
Dual mode propulsion rocket Rocket takes off as a bipropellant rocket, then turns to using just one propellant as a monopropellant Simplicity and ease of control Lower performance than bipropellants
Tripropellant rocket Three different propellants (usually hydrogen, hydrocarbon and liquid oxygen) are introduced into a combustion chamber in variable mixture ratios, or multiple engines are used with fixed propellant mixture ratios and throttled or shut down Reduces take-off weight, since hydrogen is lighter; combines good thrust to weight with high average Isp, improves payload for launching from Earth by a sizeable percentage Similar issues to bipropellant, but with more plumbing, more R&D
Air-augmented rocket Essentially a ramjet where intake air is compressed and burnt with the exhaust from a rocket Mach 0 to Mach 4.5+ (can also run exoatmospheric), good efficiency at Mach 2 to 4 Similar efficiency to rockets at low speed or exoatmospheric, inlet difficulties, a relatively undeveloped and unexplored type, cooling difficulties, very noisy, thrust/weight ratio is similar to ramjets.
Turborocket A combined cycle turbojet/rocket where an additional oxidizer such as oxygen is added to the airstream to increase maximum altitude Very close to existing designs, operates in very high altitude, wide range of altitude and airspeed Atmospheric airspeed limited to same range as turbojet engine, carrying oxidizer like LOX can be dangerous. Much heavier than simple rockets.
Precooled jet engine / LACE (combined cycle with rocket) Intake air is chilled to very low temperatures at inlet before passing through a ramjet or turbojet engine. Can be combined with a rocket engine for orbital insertion. Easily tested on ground. High thrust/weight ratios are possible (~14) together with good fuel efficiency over a wide range of airspeeds, mach 0-5.5+; this combination of efficiencies may permit launching to orbit, single stage, or very rapid intercontinental travel. Exists only at the lab prototyping stage. Examples include RB545, SABRE, ATREX

 Electrically powered

Type Description Advantages Disadvantages
Resistojet rocket (electric heating) A monopropellant is electrically heated by a filament for extra performance Higher Isp than monopropellant alone, about 40% higher. Uses a lot of power and hence gives typically low thrust
Arcjet rocket (chemical burning aided by electrical discharge) Similar to resistojet in concept but with inert propellant, except an arc is used which allows higher temperatures 1600 seconds Isp Very low thrust and high power, performance is similar to Ion drive.
Pulsed plasma thruster (electric arc heating; emits plasma) Plasma is used to erode a solid propellant High Isp , can be pulsed on and off for attitude control Low energetic efficiency
Variable specific impulse magnetoplasma rocket Microwave heated plasma with magnetic throat/nozzle Variable Isp from 1000 seconds to 10,000 seconds similar thrust/weight ratio with ion drives (worse), thermal issues, as with ion drives very high power requirements for significant thrust, really needs advanced nuclear reactors, never flown, requires low temperatures for superconductors to work

Solar powered

The Solar thermal rocket would make use of solar power to directly heat reaction mass, and therefore does not require an electrical generator as most other forms of solar-powered propulsion do. A solar thermal rocket only has to carry the means of capturing solar energy, such as concentrators and mirrors. The heated propellant is fed through a conventional rocket nozzle to produce thrust. The engine thrust is directly related to the surface area of the solar collector and to the local intensity of the solar radiation and inversely proportional to the Isp.
Type Description Advantages Disadvantages
Solar thermal rocket Propellant is heated by solar collector Simple design. Using hydrogen propellant, 900 seconds of Isp is comparable to Nuclear Thermal rocket, without the problems and complexity of controlling a fission reaction. Using higher–molecular-weight propellants, for example water, lowers performance. Only useful once in space, as thrust is fairly low, but hydrogen is not easily stored in space, otherwise moderate/low Isp if higher–molecular-mass propellants are used

Beam powered

Type Description Advantages Disadvantages
light beam powered rocket Propellant is heated by light beam (often laser) aimed at vehicle from a distance, either directly or indirectly via heat exchanger simple in principle, in principle very high exhaust speeds can be achieved ~1 MW of power per kg of payload is needed to achieve orbit, relatively high accelerations, lasers are blocked by clouds, fog, reflected laser light may be dangerous, pretty much needs hydrogen monopropellant for good performance which needs heavy tankage, some designs are limited to ~600 seconds due to reemission of light since propellant/heat exchanger gets white hot
microwave beam powered rocket Propellant is heated by microwave beam aimed at vehicle from a distance microwaves avoid reemission of energy, so ~900 seconds exhaust speeds might be achieveable ~1 MW of power per kg of payload is needed to achieve orbit, relatively high accelerations, microwaves are absorbed to a degree by rain, reflected microwaves may be dangerous, pretty much needs hydrogen monopropellant for good performance which needs heavy tankage, transmitter diameter is measured in kilometres to achieve a fine enough beam to hit a vehicle at up to 100 km.

Nuclear powered

Nuclear propulsion includes a wide variety of propulsion methods that use some form of nuclear reaction as their primary power source. Various types of nuclear propulsion have been proposed, and some of them tested, for spacecraft applications:
Type Description Advantages Disadvantages
Radioisotope rocket/"Poodle thruster" (radioactive decay energy) Heat from radioactive decay is used to heat hydrogen about 700–800 seconds, almost no moving parts low thrust/weight ratio.
Nuclear thermal rocket (nuclear fission energy) propellant (typ. hydrogen) is passed through a nuclear reactor to heat to high temperature Isp can be high, perhaps 900 seconds or more, above unity thrust/weight ratio with some designs Maximum temperature is limited by materials technology, some radioactive particles can be present in exhaust in some designs, nuclear reactor shielding is heavy, unlikely to be permitted from surface of the Earth, thrust/weight ratio is not high.
Gas core reactor rocket (nuclear fission energy) Nuclear reaction using a gaseous state fission reactor in intimate contact with propellant Very hot propellant, not limited by keeping reactor solid, Isp between 1500 and 3000 seconds but with very high thrust Difficulties in heating propellant without losing fissionables in exhaust, massive thermal issues particularly for nozzle/throat region, exhaust almost inherently highly radioactive. Nuclear lightbulb variants can contain fissionables, but cut Isp in half.
Fission-fragment rocket (nuclear fission energy) Fission products are directly exhausted to give thrust
Theoretical only at this point.
Fission sail (nuclear fission energy) A sail material is coated with fissionable material on one side No moving parts, works in deep space Theoretical only at this point.
Nuclear salt-water rocket (nuclear fission energy) Nuclear salts are held in solution, caused to react at nozzle Very high Isp, very high thrust Thermal issues in nozzle, propellant could be unstable, highly radioactive exhaust. Theoretical only at this point.
Nuclear pulse propulsion (exploding fission/fusion bombs) Shaped nuclear bombs are detonated behind vehicle and blast is caught by a 'pusher plate' Very high Isp, very high thrust/weight ratio, no show stoppers are known for this technology Never been tested, pusher plate may throw off fragments due to shock, minimum size for nuclear bombs is still pretty big, expensive at small scales, nuclear treaty issues, fallout when used below Earth's magnetosphere.
Antimatter catalyzed nuclear pulse propulsion (fission and/or fusion energy) Nuclear pulse propulsion with antimatter assist for smaller bombs Smaller sized vehicle might be possible Containment of antimatter, production of antimatter in macroscopic quantities isn't currently feasible. Theoretical only at this point.
Fusion rocket (nuclear fusion energy) Fusion is used to heat propellant Very high exhaust velocity Largely beyond current state of the art.
Antimatter rocket (annihilation energy) Antimatter annihilation heats propellant Extremely energetic, very high theoretical exhaust velocity Problems with antimatter production and handling; energy losses in neutrinos, gamma rays, muons; thermal issues. Theoretical only at this poin

 History of rocket engines

According to the writings of the Roman Aulus Gellius, in c. 400 BC, a Greek Pythagorean named Archytas, propelled a wooden bird along wires using steam.[22] However, it would not appear to have been powerful enough to take off under its own thrust.
The aeolipile described in the first century BC (often known as Hero's engine) essentially consists of a steam rocket on a bearing. It was created almost two millennia before the Industrial Revolution but the principles behind it were not well understood, and its full potential was not realized for a millennium.
The availability of black powder to propel projectiles was a precursor to the development of the first solid rocket. Ninth Century Chinese Taoist alchemists discovered black powder in a search for the Elixir of life; this accidental discovery led to fire arrows which were the first rocket engines to leave the ground.
Rocket engines were also brought in use by Tippu Sultan, The king of Mysore. These rockets could be of various sizes, but usually consisted of a tube of soft hammered iron about 8" long and 1½ - 3" diameter, closed at one end and strapped to a shaft of bamboo about 4 ft. long. The iron tube acted as a combustion chamber and contained well packed black powder propellant. A rocket carrying about one pound of powder could travel almost 1,000 yards. These 'rockets', fitted with swords used to travel long distance, several meters above in air before coming down with swords edges facing the enemy. These rockets were used against British empire very effectively.
Slow development of this technology continued up to the later 20th Century, when the writings of Konstantin Tsiolkovsky first talked about liquid fuelled rocket engines.
These independently became a reality thanks to Robert Goddard. Goddard also used a De Laval nozzle for the first time on a rocket, doubling the thrust and multiplying up the efficiency by several times.
During the late 1930s, German scientists, such as Wernher von Braun and Hellmuth Walter, investigated installing liquid-fuelled rockets in aircraft (Heinkel He 112, He 111, He 176 and Messerschmitt Me 163).[23]
The turbopump was first employed by German scientists in WWII. At this time cooling the nozzle was often problematic, and the V2 ballistic missile used dilute alcohol for the fuel, which reduced the combustion temperature somewhat.
Staged combustion (Замкнутая схема) was first proposed by Alexey Isaev in 1949. The first staged combustion engine was the S1.5400 used in the Soviet planetary rocket, designed by Melnikov, a former assistant to Isaev.[24] About the same time (1959), Nikolai Kuznetsov began work on the closed cycle engine NK-9 for Korolev's orbital ICBM, GR-1. Kuznetsov later evolved that design into the NK-15 and NK-33 engines for the unsuccessful Lunar N1 rocket.
In the West, the first laboratory staged-combustion test engine was built in Germany in 1963, by Ludwig Boelkow.
Hydrogen peroxide / kerosene fuelled engines such as the British Gamma of the 1950s used a closed-cycle process (arguably not staged combustion, but that's mostly a question of semantics) by catalytically decomposing the peroxide to drive turbines before combustion with the kerosene in the combustion chamber proper. This gave the efficiency advantages of staged combustion, whilst avoiding the major engineering problems.
Liquid hydrogen engines were first successfully developed in America, the RL-10 engine first flew in 1962. Hydrogen engines were used as part of the Project Apollo; the liquid hydrogen fuel giving a rather lower stage mass and thus reducing the overall size and cost of the vehicle.
The Space Shuttle's SSME is the highest ground-launched specific impulse rocket engine to fly.[citation needed]